Written by

Sandro Pereira

Using Liquid filters in
APl Management
to transform messages

{ We can say that Liquid filters are like functions in C# code or Functoids in

BizTalk Server maps. Filters change the output of a Liquid object or variable. }

dev>scope

Table of Contents

INEFOAUCTION ...ttt ae st st se et d s sae s s s s saab s e s s saabe s ssanaees 4
VAT F= L T e TUT o I 1T S PPN 5
How to apply transformations inside api ManagemeNnt POIICIES?uiiiiiiiiiiieiiee e ettt e e e e e e e sateeebeeesabaeesaseesnnaaeas 6

Supported LiQUId fIlErSccoucieeieeccerrreeeeeerererrree e ee s seereeese e s s eeneeesess s e senenaessassasssannnaseaeas 6
AADS e e a e b h e h e h e E e h e b E e e R R e R s R b e R e e R e R e e R e R s e b e h e E e e R b e bt e e s e bbb e be e s 7
Yoo T=T o USRS PUPPSNt 8
2o =T L PPt 8
2o 1 3 PPNt 9
(07 o 11 -1 2= USRS 10
L ettt ettt h e h e e a e ea e e eh e eh e e eae e eat e eh st e a bt e ateeat e eas e oAb e e aEeSaeeeab e oAbt eaE e et e eabe oAbt e bt eabeeabe e bt e bt ebe e bt e be e beeabeenean 10
[600] 11 o I- ot SO PP O OO U PP PP PP PPPPPPPPPPPPPPPPPPRY 10
[o g Tot=) N 11
(O8] =T o Tor YO TP O TP P PP PP PPPPPPPPPPPPPPPPPRY 12
L= =R 13
DEFAUI ... h e e a e b h e e b e R e h b e b e Rt Rt b s e b e b s bbb ne e 14
D1V [=To | = 1Y PSS SRUSUSRY 14
L0011 T - 15
R or=1 o 1= I PP PP PP PP PP PTTTP PN 16
o or=1 o110 1o Lol - PP OO PP PP PP PUT PP PN 16
03 SRR 17
FIOOT .ttt e b bbbt h bbb e b b E e bR a b h e h e b e R R s e bR e e R e e R R R s e b e b e b e e b e s bttt n s ene s 17
PO PPPTN 17
Lo PPN 18
= R 18
[4« TSP OPPPRNN 19
1Y o PP P PP PP PP PP PP PPN 19
Y4 PPN 20
IMIOTUIO ...ttt b et e b e b s b bt b e e e et b h e h e b e Rt e b R e b e R Rt Rt b e b e b e e bbbt neneae s 21
NEWHNETOBY ...ttt b e bt h et e b e b e s b e s b e bt s e b e s s b e s b e e b e e bt e Rt e as e b e b e e b e e bt e b e e bb e b e b e b e e b e s bt e aeeanenene s 21
PlUS -ttt ettt h e bt bt bt e bt e bt e bt ekt e nhe e ehe e eh e e Rt e ehe e eheeeh e e R e e Rt e eh e e SR e e eheeeheeehe e eheeeh e e eaeeeateeabeeRbeeaeeeateeabeenbeeeeeareeas 22
=T o T=T oo SR SRRURUSPY 23
LR=T 14T 1Y TR 23
0T 00NN 3 TP 24
[0=T o - 1ol PSSR URPSPY 24

dev>scope

0= o Tol=] T Y TSSO USRUSPY 25
LR =] Y 25
ROUNG ..ttt b e b e b bbb b et e b e b e s b e s bt e bt e ke e b e s s h e s b e eb e e heeaseas e b e b e e b e e bt bbbt e e b e b e e b s bt et nea e 26
38 T T PP UUPPPRNN 27
)= OO PP PSPPSR OPRPRPON 27
Sl e bbb e a e h e h e h e R E e b b E e e bR e e b b e R e bt h e e Rt R s b e e e b s b b et nen e 28
Y N 29
ST ettt et e e e et e eee e et e e ee e eee et e e et e e e eeeee et e ee s e et e e eeeeee e e ee e et e e e et et e eeeeee e eeeeeeneee e ee et eneseaeeee e eeeereeeeneees 30
] 1 T O PP PPPRPPPPPPON 31
R] Ao 12 01 TSSOSO 31
Ry AT o] =LY L =TSSR 32
LTS 32
0L PN 33
TEUNCAEEWOITS ..ttt b e b e e e e s h e s b b e bt e b e s e b s b e e b e e b e e ae e bt e s e beeb e sb e e bt e be e s e b e b e s besbesbe e st ennenenne 34
{8 o T PP UPPPPRNN 35
L8] o Lot [PP P PP PP PP PTTU PPN 35
UFID@COAE ...ttt b bttt h e e st b bRt h b b e e et b b s e b e bR e Rt Rt h e b et bt a st b e bt nean 36
UFTENCOTE ...ttt st h et h e e b e b e s b e bt b e e e e b e s e s b e s b e eb e e bt e asess e b e b e e b e e bt e b e e b b et e a e b e e b bt be e n e 36
WWHEIE ettt ettt a e b e e bbb R e e a e bR h e R bR e R e e R e Rt e R bbb e R e e bRt e b e e b e b e s b b e b et enen e 37
ADOUL the AULNOT ...ttt e e see s nne et e e s se e s s ser e s e e s sess s snersassasssasssassasesasssnnnnn 39
PN Y104 Al B T-1V2 Y ol o] o 1 =TSP PPPUPRt 40

dev>scope

Introduction

Liquid is an open-source template language created by Shopify and written in Ruby.
It is the backbone of Shopify themes and is used to load dynamic content on

storefronts.

Azure APl Management uses the Liquid templating language (DotLiquid) to
transform the body of a request or response. This can be effective if you need to
completely reshape the format of your message. That can be accomplished by using

the set-body policy inside inbound, backend, outbound or on-error policies.

For example:

<inbound>

<base />

<set-body template="liquid">

{
"Header": {
"OrigSystem”: "API Management",
"DateRequest": "{{body.MsgDate}}"
¥
"InputParameters": {
"MyObject": {
"Reference": "{{body.ExtId}}",
"Type": "{{body.ObjType}}",
"Id": "{{body.Id}}"
}
}
}

</set-body>

</inbound>
DotLiquid is a deviation from Shopify's original liquid template language, it is a .Net
port of the popular Shopify's Liquid templating language. It is a separate project that
aims to retain the same template syntax as the original, while using .NET coding

conventions where possible. However, they are not entire the same, in some cases

they have different behaviors.

dev>scope

Liquid uses a combination of objects, tags, and filters inside template files to display

dynamic content.
Where:

e Objects contain the content that Liquid displays on a page. Objects and

variables are displayed when enclosed in double curly braces: {{ and }}.
Hi my name is {{ author.name }}

e Tags create the logic and control flow for templates. The curly brace
percentage delimiters {% and %} and the text that they surround do not
produce any visible output when the template is rendered. This lets you assign
variables and create conditions or loops without showing any of the Liquid logic

on the page.

{% if author %}
Hi my name is {{ author.name }}!
{% endif %}
e Filters change the output of a Liquid object or variable. They are used within
double curly braces {{ }} and variable assignment, and are separated by a pipe

character |.

{{ "Sandro" | Append: " Pereira" }}

On this whitepaper we will focus on the DotLiquid Filters you can use on API

Management to transform the body of a request or response.

What is a liquid filter?

As mentioned above, Filters change the output of a Liquid object or variable. They are
used within double curly braces {{ }} and variable assignment, and are separated by a
pipe character |. They are like functions in C# code or Functoids in BizTalk Server

maps.

If we apply for example the Append filter like:

dev>scope

{% assign myvariable = "Sandro" %}

{{ myvariable | Append: " Pereira" }}

The end result will be: Sandro Pereira

We can also apply multiple filters on one output, and are applied from left to right.
Like a PowerShell pipeline. A PowerShell pipeline is a series of commands connected
by pipeline operators (|). Each pipeline operator sends the results of the preceding

command to the next command. Filters use the same concept. For example:
"Name": "{{ "Sandro Pereira" | Split: " " | Last }}"

The end result here will be: "Name”: "Pereira”

How to apply transformations inside api management policies?

The set-body policy can be configured to use the Liquid templating language to
transform the body of a request or response. This can be effective if you need to

completely reshape the format of your message.

The implementation of Liquid used in the set-body policy is configured in 'C# mode'.
This is particularly important when doing things such as filtering. As an example, using

a date filter requires the use of Pascal casing and C# date formatting e.g.:

{{ body.foo.startDateTime| Date: "yyyyMMddTHH:mm:ssZ" }}

In order to correctly bind to an XML body using the Liquid template, use a set-header
policy to set Content-Type to either application/xml, text/xml (or any type ending
with +xml); for a JSON body, it must be application/json, text/json (or any type ending

with +json).

One of the biggest differences between DotLiquid and Shopify's Liquid is that
DotLiquid requires Pascal casing for Liquid filter names, for example: AtlLeast

(DotLiquid) instead of at_least (Shopify).

dev>scope

The following DotLiquid filters are supported in the set-body policy.

Abs

This filter returns the absolute value of a number. The filter It will also work on a
string that only contains a number. Otherwise returns NaN. For example:

{% assign myvariable = "17" %}
{{ myvariable | Abs }}

Result is 17

{% assign myvariable = "17" %}

{{ myvariable | Abs }}
Result is 17

{% assign myvariable = "-4" %} {{ myvariable | Abs }}
Result is -4

{% assign myvariable = -4 %} {{ myvariable | Abs }}
Result is -4

{% assign myvariable "21.15" %} {{ myvariable | Abs }}

Result is 21.15

{% assign myvariable "21,15" %} {{ myvariable | Abs }}

Result is NaN
{% assign myvariable = "Test" %} {{ myvariable | Abs }}

Result is NaN

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {

dev>scope

"Internalld": "{{body.Id}}",
"ExternalRef": "{{body.ExternalId}}",
"Age": "{{body.Age | Abs }}"
"StaticValue": "Sandro"

}

</set-body>

Append

This filter adds a specified string to the end of another string. To do that you need to:

{% assign myvariable = "Sandro" %}

{{ myvariable | Append: " Pereira" }}

Result is Sandro Pereira

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Internalld": "{{body.Id}}",
"ExternalRef": "{{body.ExternalId}}",
"filename": "{{body.id | Append: '.xml' }}",
"StaticValue": "Sandro"
}
}

</set-body>

AtLeast

This filter limits a number to a minimum value. To do that you need to:
{% 4 | AtLeast: 5 }}

Resultis 5
{% 4 | AtLeast: 3 }}

Result is 4

dev>scope

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Internalld": "{{body.Id}}",
"ExternalRef": "{{body.ExternalId}}",
"Evaluation": "{{body.Eval | AtLeast: 1 }}",
"StaticValue": "Sandro"
}
}

</set-body>

AtMost

This filter it is the inverse of AtLeast, it limits a number to a maximum value.

To do that you need to:

{% 4 | AtMost: 5 }}
Result is 4

{% 4 | AtMost: 3 }}

Resultis 3

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Internalld": "{{body.Id}}",
"ExternalRef": "{{body.ExternalId}}",
"Evaluation": "{{body.Eval | AtMost: 9 }}",
"StaticValue": "Sandro"
}
}

</set-body>

dev>scope

Capitalize

This filter makes the first character of a string capitalized and converts the remaining

characters to lowercase. To do that you need to:

{% assign myvariable = "Sandro PEREIRA" %}
{{ myvariable | Capitalize }}

Result is Sandro Pereira

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Internalld": "{{body.Id}}",
"ExternalRef": "{{body.ExternalId}}",
"Name": "{{body.Name | Capitalize }}"
}
}

</set-body>

Ceil

This filter rounds the input up to the nearest whole number. Liquid tries to convert

the input to a number before the filter is applied. To do that you need to:

{% assign myvariable = 1.4 %}
{{ myvariable | Ceil }}

Result is 2

Despite that is the goal of this filter | couldn't put it working properly on a set-body

policy in APl Management. If | apply the same operation inside APIM | get 1.4 as result.

Compact

This filter Removes any nil values from an array. To do that you need to:

{% assign all_categories = site.pages | Map: "category" | Compact %}

10

dev>scope

{% for item in all_categories %}

- {{ item }}
{% endfor %}

Based on shopify documentation, in this example, assume the object site.pages

contains all the metadata for a website. Using assign with the map filter creates a
variable that contains only the values of the category properties of everything in the

site.pages object. If we perform a Map filter the result will then be:

- Business

- Celebrities
- Lifestyle

- Sports

- Technology

Combined with the Compact filter the result then should be like:

- Business

- Celebrities
- Lifestyle

- Sports

- Technology

On the time | was writing this document | couldn't find a practical sample to set on

a set-body policy or any other policy in APl Management.

Concat

This filter concatenates (joins together) multiple arrays. The resulting array contains

all the items from the input arrays. To do that you need to:

{% assign fruits = "apples, oranges, peaches" | Split: ", " %}

{% assign vegetables = "carrots, turnips, potatoes" | Split: ", " %}
{% assign everything = fruits | Concat: vegetables %}

{% for item in everything %}

- {{ item }}

{% endfor %}

According to the official documentation, the result should be:
11

dev>scope

- apples

- oranges
- peaches
- carrots
- turnips

- potatoes
Simple sample on a set-body policy
<set-body template="liquid">
{% assign fruits = "apples, oranges, peaches" | Split: ", " %}

{% assign vegetables = "carrots, turnips, potatoes" | Split: ", " %}

{% assign everything = fruits | Concat: vegetables %}

{
"OutputMessage": [
{% for item in everything %}
"Item": "{{ item }}"
{% endfor %}
}
}

</set-body>

However, it seems that it shouldn't work properly in DotLiquid, since on the time |

write this document I'm always getting the following output:
- apples

- oranges

- peaches

Currency

This filter converts the input object into a formatted currency as specified by the

context culture, or languageTag parameter (if provided). To do that you need to:

{% assign myvariable = "2" %}

{{ myvariable | Currency }}

Result is $2,00

Simple sample on a set-body policy

12

dev>scope

<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{ 2 | Currency }}",

}
</set-body>

We can override language for rendering, for example 'fr-FR'
<set-body template="liquid">
{
"OutputMessage": {

"Money": "{{ 5 | Currency:'fr-FR' }}",

}
</set-body>

The result will be: 5,00 €

Date

This filter formats a date using a .NET date format string. Opposite to the date filter
in shopify that uses strftime as the format of the timestamp, DotLiquid use a .Net

date format. To do that you need to:

{% assign myvariable = "2022-11-02 14:39" %}
{{ myvariable | Date: "dd-MM-yyyy HH:mm:ss" }}

Result is 02-11-2022 14:39:00

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Internalld": "{{body.Date | Date: " dd-MM-yyyy HH:mm:ss " }}"
"StaticValue": "Sandro"
}
}

</set-body>

13

dev>scope

Default

This filter sets a default value for any variable with no assigned value. default will

show its value if the input is nil, false, or empty. To do that you need to:

{% assign myvariable = "" %}

{{ myvariable | Default: "Sandro" }}
Result is Sandro

{% assign myvariable = "Pereira" %}

{{ myvariable | Default: "Sandro" }}

Result is Pereira

Simple sample on a set-body policy
<set-body template="liquid">

{
"OutputMessage": {

"SystemName": "{{body.System | Default: "APIM" }}"

¥
</set-body>
DividedBy

This filter divides a number by another number. The result is rounded down to the

nearest integer (that is, the floor) if the divisor is an integer. To do that you need to:

{% assign myvariable = 10 %}
{{ myvariable | DividedBy: 2 }}

Resultis 5

{% assign myvariable = 10 %}
{{ myvariable | DividedBy: 3 }}

Resultis 3

14

dev>scope

{% assign myvariable = 10 %}
{{ myvariable | DividedBy: 3.2 }}

Result is 3.12499995343387

Simple sample on a set-body policy
<set-body template="liquid">
{

"OutputMessage": {
"Name": "{{ 10 | DividedBy: 2 }}"

}
</set-body>

Notice: the filter doesn't accept string has input.

Downcase

This filter makes each character in a string lowercase. It has no effect on strings which

are already all lowercase. To do that you need to:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | Downcase }}

Result is sandro pereira

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{ "Sandro Pereira" | Downcase }}",

}
</set-body>

15

dev>scope

Escape

This filter Escapes HTML chars in a string by replacing characters with escape
sequences (so that the string can be used in a URL, for example). It doesn't change

strings that don't have anything to escape. To do that you need to:

{% assign myvariable = "Sandro > Pereira 'Hello'?" %}

{{ myvariable | Escape }}

Result is Sandro > Pereira 'Hello'?

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Money": "{{ "Sandro > Pereira 'Hello'?" | Escape }}",

¥
</set-body>
EscapeOnce

This filter escapes HTML chars in a string without changing existing escaped entities.

It doesn't change strings that don't have anything to escape. To do that you need to:

{% assign myvariable = "Sandro &1lt; Pereira &" %}

{{ myvariable | EscapeOnce }}

Result is Sandro < Pereira &

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{ item.Name | EscapeOnce }}",

}
</set-body>

16

dev>scope

First
This filter returns the first item of an array. To do that you need to:

{% assign myvariable = "Sandro Pereira" Split: " " %}

{{ myvariable | First }}

Result is Sandro

Simple sample on a set-body policy
<set-body template="liquid">
{

"OutputMessage": [
"Name": "{{ "Sandro Pereira" | Split: " " | First }}"

)i
</set-body>
Floor

This filter rounds the input down to the nearest whole number. Liquid tries to convert

the input to a number before the filter is applied. To do that you need to:

{% assign myvariable = 1.4 %}
{{ myvariable | Floor }}

Result is 1

Despite that is the goal of this filter | couldn't put it working properly on a set-body

policy in APl Management. If | apply the same operation inside APIM | get 1.4 as result.

H

This filter escape html chars. This is exactly the same as Escape filter - it is an alias
to the Escape filter. It doesn't change strings that don't have anything to escape. To

do that you need to:

17

dev>scope

{% assign myvariable = "Sandro 'A' Pereira" %}

{{ myvariable | H }}

Result is Sandro 'A' Pereira

Simple sample on a set-body policy
<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{ "Sandro 'A' Pereira" | H }}",

)i
</set-body>
Join

This filter joins elements of the array into a single string using the argument as a

separator. To do that you need to:

{% assign beatles = "John, Paul, George, Ringo" | Split: ", " %}
{{ beatles | Join: " and " }}

Result is John and Paul and George and Ringo

Simple sample on a set-body policy
<set-body template="liquid">
{% assign beatles = "John, Paul, George, Ringo" | Split: ", " %}
{

"OutputMessage": [

"Name": "{{ beatles | Join: " and " }}"

}
</set-body>

Last

This filter returns the last item of an array. To do that you need to:

18

dev>scope

{% assign myvariable = "Sandro Pereira" Split: " " %}

{{ myvariable | Last }}

Result is Pereira

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": [
"Name": "{{ "Sandro Pereira" | Split: " " | Last }}"

}
</set-body>

Lstrip

This filter Removes all whitespace (tabs, spaces, and newlines) from the left side of a

string. It does not affect spaces between words. To do that you need to:

{% assign myvariable = Sandro Pereira "%}

{{ myvariable | Lstrip }}

Result is Sandro Pereira !

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {

"Items": "{{ " Sandro Pereira 1" | Lstrip }}"

}
</set-body>
Map

This filter creates an array of values by extracting the values of a named property

from another object. To do that you need to:

{% assign all_categories = site.pages | Map: "category" %}

19

dev>scope

{% for item in all_categories %}

- {{ item }}
{% endfor %}

Based on shopify documentation, in this example, assume the object site.pages

contains all the metadata for a website. Using assign with the map filter creates a
variable that contains only the values of the category properties of everything in the
site.pages object. The result will then be:

- Business

- Celebrities

- Lifestyle

- Sports

- Technology
On the time | was writing this document | couldn’t find a practical sample to set on a

set-body policy or any other policy in APl Management.

Minus

This filter subtracts a number from another number. To do that you need to:

{% assign myvariable = 4 %}
{{ myvariable | Minus: 3 }}

Result is 1

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Name": "{{ 4 | Minus: 3 }}"

}
</set-body>

If you provide negative values on the Minus input this operation will be converted to

an addition. For example:

20

dev>scope

{% assign myvariable = 4 %}
{{ myvariable | Minus: -3 }}

Result will be 7.

Notice that, opposite to the Plus filter the Minus do not allow that the input to be a

string.

Modulo

This filter returns the remainder of a division operation. To do that you need to:

{% assign myvariable = 3 %}
{{ myvariable | Modulo: 2 }}

Resultis 1

{% assign myvariable = 183.357 %}
{{ myvariable | Modulo: 12 }}

Result is 3.357

Simple sample on a set-body policy
<set-body template="liquid">
{

"OutputMessage": {
"Name": "{{ 3 | Modulo: 2 }}"

}
</set-body>

Notice: the filter doesn't accept string has input.

NewlineToBr

This filter inserts an HTML line break (
) in front of each newline (\n) in a string.

To do that you need to:

{% capture string with_newlines %}Sandro

21

dev>scope

Pereira{% endcapture %}

{{ string_with_newlines | NewlineToBr }}

Result is:

Sandro

Pereira

Simple sample on a set-body policy

<set-body template="liquid">
{% capture string_with_newlines %}Sandro

Pereira{% endcapture %}

{
"OutputMessage": {

"Items": "{{ string_with_newlines | NewlineToBr }}"

}
</set-body>

Plus

This filter adds a number to another number. If you provide a string this will converts

as a concatenation operation. To do that you need to:

{% assign myvariable = 4 %}

{{ myvariable | Plus: 4 }}

Result is 8

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"Name": "{{ 4 | Plus: 4 }}"

}
</set-body>

22

dev>scope

Once, again if you provide a string as input that will perform a concatenation. For

example:

{% assign myvariable = "4" %}

{{ myvariable | Plus: 4 }}

Result will be 44

Prepend

This filter adds the specified string to the beginning of another string. To do that you

need to:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | Prepend: "person: " }}

Result is person: Sandro Pereira

Simple sample on a set-body policy
<set-body template="liquid">

{
"OutputMessage": {

"Internalld": "{{body.Id | Prepend: "entity: " }}"

b
</set-body>
Remove

This filter removes every occurrence of the specified substring from a string. To do

that you need to:

{% assign myvariable = "Sandro \Pereira\" %}

{{ myvariable | Remove: "\" }}

Result is Sandro Pereira

Simple sample on a set-body policy

23

dev>scope

<set-body template="liquid">

{
"OutputMessage": {

"Name": "{{ result.Address | Remove: "\" }}"

}
</set-body>
RemoveFirst

This filter removes only the first occurrence of the specified substring from a string.

To do that y ou need to:

{% assign myvariable = "Sandro !Pereira!" %}

{{ myvariable | RemoveFirst: "!" }}

Result is Sandro Pereira!

Simple sample on a set-body policy
<set-body template="liquid">
{

"OutputMessage": {

"Name": "{{ result.Address | RemoveFirst: "!" }}"

¥
</set-body>
Replace

This filter replaces every occurrence of the first argument in a string with the second

argument. To do that you need to:

{% assign myvariable = "Sandro \ Pereira" %}

{{ myvariable | Replace: '\\', '\\' }}
Result is Sandro \\ Pereira

Simple sample on a set-body policy

<set-body template="liquid">
24

dev>scope

"OutputMessage": {
"Name": "{{ result.Address | Replace: '\\', '\\' }}"

¥
</set-body>
ReplaceFirst

This filter replaces only the first occurrence of the first argument in a string with the

second argument. To do that you need to:

{% assign myvariable = "Sandro !Pereira!" %}

{{ myvariable | ReplaceFirst: '!', '' }}

Result is Sandro Pereiral!

Simple sample on a set-body policy
<set-body template="liquid">
{

"OutputMessage": {
"Name": "{{ result.Address | ReplaceFirst: '!', '' }}"

}
</set-body>
Reverse

This filter reverses the order of the items in an array. reverse cannot reverse a string.

To do that you need to:

{% assign my_array = "John, Paul, George, Ringo" | Split: ", " %}

{{ my_array | Reverse }}
Result is: JohnPaulGeorgeRingo

{% assign my_array = "John, Paul, George, Ringo" | Split: ", " %}

{{ my_array | Reverse | Join: " and " }}

Result is: John and Paul and George and Ringo
25

dev>scope

Simple sample on a set-body policy

<set-body template="liquid">

{% assign my_array = "John, Paul, George, Ringo" | Split: ", " %}

{
"OutputMessage": {

"Items": "{{ my_array | Reverse | Join: " and " }}"

}

</set-body>

Round

This filter rounds a number to the nearest integer or, if a number is passed as an

argument, to that number of decimal places. To do that you need to:

{%

{{
Result is 1

{%

{{
Result is 1.2

{%

{{
Result is 1.21

%
{{

Result is 1312

%
{{

Result is 1.31

assign myvariable = 1.2 %}

myvariable | Round }}

assign myvariable = 1.2 %}

myvariable | Round: 2 }}

assign myvariable = 1.212 %}
myvariable | Round: 2 }}

assign myvariable = 1,312 %}
myvariable | Round: 2 }}

assign myvariable = "1,312" %}
myvariable | Round: 2 }}

Simple sample on a set-body policy

26

dev>scope

<set-body template="liquid">

{
"OutputMessage": {
"UnitPrice": "{{body.Price | Round: 2 }}" }

¥
</set-body>
Rstrip

This filter Strip all trailing (from the right side) whitespace (tabs, spaces, and

newlines) from input. It does not affect spaces between words. To do that you need

to:
{% assign myvariable = " Sandro Pereira " %}
{{ myvariable | Rstrip }}

Resultis” Sandro Pereira”

Simple sample on a set-body policy
<set-body template="liquid">

{
"OutputMessage": [

"Name": "{{ " Sandro Pereira " | Rstrip }}"

}
</set-body>
Size
This filter returns the size of an array or of a string. To do that you need to:

{% assign myvariable = "Sandro" %}

{{ myvariable | Size }}

Result is: 6

Simple sample on a set-body policy

<set-body template="liquid">

{
Z1

dev>scope

"OutputMessage": {
"Money": "{{ "Sandro" | Size }}",

}
</set-body>

If we work with arrays, then for example:

<set-body template="liquid">
{% assign my_array = "apples, oranges, peaches, plums" | Split: ", " %}

{
"OutputMessage": {

"Money": "{{ my_array | Size }}",

}
</set-body>

The result will be 4.

Slice

This filter returns a substring of one character or series of array items beginning at
the index specified by the first argument. An optional second argument specifies the
length of the substring or number of array items to be returned. To do that you need

to:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | Slice: @ }}

Resultis S

Simple sample on a set-body policy

<set-body template="liquid">
{% assign my_array = "apples, oranges, peaches, plums" | Split: ", " %}

{
"OutputMessage": {

"Money": "{{ "Sandro Pereira" | Slice: @ }}",

}
</set-body>

28

dev>scope

If Slice is set to 1that the result will be a.

We can also add a second parameter to specify the length of the substring, let's say:
{{ myvariable | Slice: @, 5 }}

The result then will be: Sandro

Negative values on the first input will count back from the end of the string/array.
{{ myvariable | Slice: -3 }}

The result then will be: i

Sort

This filter sorts items in an array. Opposite to the default sort filter in shopify this is
not a sort in case-sensitive order. DotLiquid Sort filter in case-insensitive to do that

you need to:

{% assign beatles = "John, Paul, George, Ringo" | Split: ", " | Sort %}
{% for member in beatles %}

{{ member }}
{% endfor %}

Result is:

- George
- John
- Paul

- Ringo
Simple sample on a set-body policy:

<set-body template="liquid">
{% assign beatles = "John, Paul, George, Ringo" | Split: ", " | Sort %}

{{ beatles}}
{
"OutputMessage": [

{% for member in beatles %}
ZY

dev>scope

"Member": "{{ member }}"{% if forloop.last != true %},{% endif %}
{% endfor %}

}
</set-body>

Split

This filter split input string into an array of substrings separated by given pattern. To

do that you need to:

{% assign beatles = "John, Paul, George, Ringo" | Split: ", " %}
{% for member in beatles %}

{{ member }}
{% endfor %}

Result would be:
- John
- Paul
- George
- Ringo

Simple sample on a set-body policy

<set-body template="liquid">
{% assign beatles = "John, Paul, George, Ringo" | Split: ", " %}

{
"OutputMessage": [
{% for member in beatles %}
"Member": "{{ member }}"{% if forloop.last != true %},{% endif %}
{% endfor %}
1
}

</set-body>

30

dev>scope

Strip

This filter removes all whitespace (tabs, spaces, and newlines) from both the left and
right sides of a string. It does not affect spaces between words. To do that you need

to:

{% assign myvariable = " Sandro Pereira "%}

{{ myvariable | Strip }}

Result is Sandro Pereira

Simple sample on a set-body policy
<set-body template="liquid">
{

"OutputMessage": [

"Name": "{{ " Sandro Pereira " | strip }}"

}
</set-body>
StripHtml
This filter removes any HTML tags from a string. To do that you need to:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | StripHtml }}

Result is Sandro Pereira

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": [

"Name": "{{ "Sandro Pereira" | StripHtml }}"

}
</set-body>

31

dev>scope

StripNewlines

This filter removes any newline characters (line breaks) from a string. To do that you

need to:

{% capture string with_newlines %}Sandro
Pereira{% endcapture %}

{{ string_with_newlines | StripNewlines }}

Result is Sandro Pereira

Simple sample on a set-body policy
<set-body template="liquid">

{% capture string_with_newlines %}Sandro

Pereira{% endcapture %}

{
"OutputMessage": [

"Name": "{{ string_with_newlines | StripNewlines }}"

}
</set-body>

Notice: it does not remove
. For example, if the input is:

{% capture string with_newlines %}Sandro
 Pereira{% endcapture %}

{{ string_with_newlines | StripNewlines }}

The result will still be: Sandro
 Pereira

Times

Do not get fooled by the name of this filter, it is not to perform operation in datetime
or time (clock), this is a mathematic operation. This filter multiplies a number by

another number. To do that you need to:

{% assign myvariable = 4 %}
{{ myvariable | Times: 2 }}

Result is 8

32

dev>scope

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {
"TotalValue": "{{body.Quantity | Times: body.UnitPrice }}"

¥
</set-body>

DotLiquid Times filter also allows that the input to be a string. On that case it will

repeat the input the certain amount of times you specify on the multiple input

{% assign myvariable = "Sandro" %}

{{ myvariable | Times: 2 }}

Result is SandroSandro

Truncate

This filter shortens a string down (truncates) to the number of characters passed as
an argument. If the specified number of characters is less than the length of the
string, an ellipsis (...) is appended to the string and is included in the character count.
To do that you need to:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | Truncate: 6 }}

Result is Sandro...

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{ "Sandro Pereira" | Truncate: 40 }}",

}
</set-body>

33

dev>scope

If we set for example Truncate: 40 then the result would be only Sandro Pereira

Optional we can setup a suffix to append when string is truncated. The defaults are

the ellipsis(...). For example:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | Truncate: 7, "+" }}

The result then will be Sandro+

TruncateWords

This filter shortens a string down to the number of words passed as an argument. If
the specified number of words is less than the number of words in the string, an ellipsis

(...) is appended to the string. To do that you need to:

{% assign myvariable = "Sandro Augusto Sousa Pereira" %}

{{ myvariable | TruncateWords: 2 }}

Result is Sandro Augusto...

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{ "Sandro Augusto Sousa Pereira" | TruncateWords: 2 }}",

}
</set-body>

If we set for example Truncate: 40 then the result would be only Sandro Augusto

Sousa Pereira

Optional we can setup a suffix to append when string is truncated. The defaults is the

ellipsis(...). For example:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | Truncate: 2, "---" }}

34

dev>scope

The result then will be Sandro Augusto---

Uniq
This filter removes any duplicate items in an array. To do that you need to:

{% assign my_array = "Sandro, Pereira, Sandro, Pereira" | Split: ", " %}

{{ my_array | Uniq | Join: ", " }}

Result is Sandro, Pereira

Simple sample on a set-body policy

<set-body template="liquid">
{% assign my_array = "Sandro, Pereira, Sandro, Pereira" | Split: ", " %}

{
"OutputMessage": {
"Items": "{{ my_array | Uniq | Join: ", " }}"

}
</set-body>

Upcase

This filter makes each character in a string uppercase. It has no effect on strings which

are already all uppercase. To do that you need to:

{% assign myvariable = "Sandro Pereira" %}

{{ myvariable | Upcase }}

Result is SANDRO PEREIRA

Simple sample on a set-body policy

<set-body template="liquid">
{
"OutputMessage": {

"Money": "{{ "Sandro Pereira" | Upcase }}",

}
</set-body>

oo}

dev>scope

UriDecode

This filter decodes a string that has been encoded as a URL or by UrlEncode filter. To

do that you need to:

{% assign myvariable = "sandro.pereira%4@devscope.net" %}

{{ myvariable | UrlDecode }}

Result is sandro.pereira@devscope.net

Simple sample on a set-body policy
<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{context.Request.OriginalUrl.Query.Name | UrlDecode }}",

}
</set-body>
UrlEncode

This filter converts any URL-unsafe characters in a string into percent-encoded

characters. To do that you need to:

{% assign myvariable = "sandro.pereira@devscope.net" %}

{{ myvariable | UrlEncode }}

Result is sandro.pereira%40devscope.net

Simple sample on a set-body policy

<set-body template="liquid">

{
"OutputMessage": {

"Money": "{{ "sandro.pereira@devscope.net" | UrlEncode }}",

}
</set-body>

36

dev>scope

For me, this filter makes more sense to use not inside bodies but when we are
extracting a value from a message and add it to a URL to do for example a Get HTTP

call.

Another example is, if the value is sandro:pereira/net the result of the UrlEncode

filter will be sandro%3Apereira%2Fnet

Where

This filter creates an array including only the objects with a given property value, or

any truthy value by default. To do that you need to:

All products:

{% for product in products %}
- {{ product.title }}

{% endfor %}

{% assign kitchen_products = products | where: "type", "kitchen" %}
Kitchen products:

{% for product in kitchen_products %}

- {{ product.title }}

{% endfor %}

Based on shopify documentation, in this example, assume you have a list of products,

and you want to show your kitchen products separately. Using where, you can create
an array containing only the products that have a "type" of "kitchen". The result will

then be:

All products:

- Vacuum

- Spatula

- Television

- Garlic press
Kitchen products:

- Spatula

- Garlic press

37

dev>scope

On the time | was writing this document | couldn't find a practical sample to set on

a set-body policy or any other policy in APl Management.

38

About the Author

Weritten by Sandro Pereira
Azure MVP & MCTS BizTalk

sandro.pereira@devscope.net
sandro-pereira@live.com.pt
twitter.com/sandro_asp
linkedin.com/in/sandropereira

github.com/sandroasp

Sandro Pereira lives in Portugal and is
currently the Head of Enterprise
Integration at DevScope. In the past
been

years, he has working on

implementing Integration scenarios
both on-premises and cloud for various
clients, each with different scenarios
from a technical point of view, size, and
criticality, using Microsoft Azure (API
Management, Logic Apps, Service Bus,
Hubs, Power

Event PowerApps,

Automate, ...), Microsoft BizTalk Server
and different technologies like AS2,
EDI, RosettaNet, SAP, TIBCO and many

others.

dev>scope

‘% 3}

e «@

Sandro is very active in the BizTalk
community as blogger, member and
moderator on the MSDN BizTalk Server
Forums, TechNet Wiki author, Code

Gallery and GitHub contributor,
member of several online communities,
BizTalk360 and

guest author at

Serverless360, public speaker and
technical reviewer of several BizTalk
and Azure books and whitepapers, all
focused on Integration. He is also the
author of the book BizTalk Mapping

Patterns & Best Practices.

He has been awarded the Microsoft Most Valuable Professional (MVP) since January

2011, for his contributions to the world-wide BizTalk Server community and Microsoft

Azure com. He currently holds MCTS: BizTalk Server 2006 and BizTalk Server 2010

certifications.

\\\\

Microsoft®
Most Valuable
Professional

About DevScope

Rua de Passos Manuel 223, 3°
4000-385 Porto
T.22 3751350

info@devscope.net

devscope.net

fYy@moOo .

DevScope specializes in giving organizations
the tools and knowledge they need to be
competitive. We are one of the most
distinguished Microsoft partners in Portugal,
one of the few companies in the country with
two advanced specializations and 9 Gold
certifications in different technological areas.
We are pioneers and always work with the
latest technology to provide our customers
and partners with the most advanced
solutions. For almost 20 vyears, we have
developed and implemented solutions in and
outside Portugal in the most varied areas of
activity, from retail to health, through real
estate or the public sector, producing lasting

results.

Advanced Specialization: Analytics
Advanced Specialization: Low Code
Gold Application Development
Gold Application Integration

M ic rosoft Gold Cloud Platform

Gold Cloud Productivity

Power Patforn Anaytics m
f) S
Pa rtner Gold Collaboration and Content é PHE

Gold Data Analytics
Gold Datacenter
Gold DevOps

dev>scope

Solutions

Power Platform

Portals - Office 365 & SharePoint
Web and App Development

Al Machine Learning

Business Intelligent

Enterprise Integration

Cloud & DevOps

Training & Education

Products

PowerBI Tiles Pro
PowerBIl Robots
PowerBl Portal
PowerBIl Data Portal

SmartDocumentor Cloud

40

dev>scope

Rua de Passos Manuel 223, 3°
4000-385 Porto | T. 22 375 1350

info@devscope.net

devscope.net

